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Lecture 7 – Dimension Reduction and Johnson-Linderstrauss Lemma

Instructor: Alex Andoni Scribes: Jiahui Liu, David Pu

1 Introduction

This lecture mainly focuses on dimension reduction: Johnson-Linderstrauss Lemma and especially its

distributional version. Chi-squared distribution is introduced when there is a sum of Gaussian distributed

variables.

2 Last Time

Tug-of-War:

• for frequency vector f ∈ R:

• pick random σi ∈ {±1}

• zi =
∑

i=1 σifi

• Estimator: z2

Tug-of-War+ : k estimators

zj =
∑
j=1

σijfi, j = 1, ...., k

Estimator:
1

k

∑
zj

2

3 Dimension Reduction

Definition 1 (Sketching function). For x̄ ∈ Rn, x̄ = (x1, x2, ...., xn), a sketching function ϕ : Rn → Rk

is defined as

ϕ(x) =
1√
k

(
∑

σ1ixi,
∑

σ2ixi, ...
∑

σkixi)

Definition 2 (Linear Property). ϕ is linear if:

ϕ(x) + ϕ(y) = ϕ(x+ y)

ϕ(x)− ϕ(y) = ϕ(x− y)
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Estimator:

ϕ(x)→ ‖ϕ(x)‖2 =
1

k
Σj=1zj

2

ϕ(x) =
1√
k

(zi, z2, ...zk)

Given sketches ϕ(x) and ϕ(y):

we can compute

‖ϕ(x)− ϕ(y)‖2
2 = ‖ϕ(x− y)‖2

2 = (1± ε)‖x− y‖22 = (1± ε)
∑
i=1

n
(xi − yi)2

3.1 Johnson-Lindenstrauss Lemma

Lemma 3 (Distributional Johnson-Lindenstrauss 1984).

∀ε > 0, there is a randomized ϕ : (R)n → (R)k such that ∀x, y ∈ (R)n

we have

P

[
‖ϕ(x)− ϕ(y)‖ ∈ (1± ε)‖x− y‖2

]
≥ 1− e

ε2k
9

(e
ε2k
9 is the failure probability.)

In original Johnson-Lindenstrauss lemma: ϕ : a random k-dimensional subspace.

Proof.

Take

ϕ(x) = (
n∑
i=1

g1ixi,
n∑
i=1

g2ixi, .....,
n∑
i=1

gkixi)
1√
k

Each gji is a Gaussian/normal N(0,1):

pdf(g) =
1

2π
e−

g2

2

Recall: What did we use to prove the correctness of Tug-of-War?

(1) E[σi] = 0

(2) E[σi
2] = 1

(3) E[σi
4] = 1
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This is satisfied by σi ∈ {±1}, but also by the Gaussian/normal random variable.

Consider k = 1:

ϕ(x) =
∑

gixi

Definition 4 (Stability Property).

k∑
i=1

gixi ∼ ‖x‖2 · a = (
∑

x2
i )

1
2 · a

a is another Gaussian N(0,1)

The probability density distribution for a centrally spherically symmetric vector ḡ = (g1, · · · , gn)

pdf(ḡ) = (
1√
2π

)n · e
−g21
2 · e

−g22
2 · · · · e

−g2n
2 = (

1√
2π

)n · e
−

∑n
i=1 g

2
i

2

ḡ · x is distributed as ḡ′ ·
(
||X||x, 0, 0, · · · , 0

)
= g′1 · ||x||2

General k:

||φ(x)− φ(y)|| = ||φ(x− y)|| ≈ ||x− y||2 ← ||z||2 where z = x− y

fix z:

φ(z) =
1√
k
·
(∑

g1izi, · · ·
∑

gkizi

)
∼ 1√

k
·
(
a1 · ||z||, a2 · ||z|, · · · , ak · ||z||

)
where each ai is Gaussian distributed

||φ(z)||22 =
1

k

k∑
j=1

a2
j · ||z||2

= ||z||2 · 1
k

k∑
j=1

a2
j

= ||z||2 · X 2
k

This is X 2 (Chi-squared) distributed with k degrees of freedom.

Fact:

P
[
X 2
k /∈ (1± ε)

]
≤ 2 · e

−k
4

(ε2−ε3)

for ε < 1
2 this gives the DJL

Corollary 5. For all N vectors (x1, x2, · · · , xN ) ∈ Rd in d-dimension, there exists a random φ from DJL

such that with k = O( log(N)
ε2

), for all i 6= j; i, j ∈ [N ] :

P

[
||φ(xi)− φ(xj)|| ∈ (1± ε)||xi − xj ||

]
≥ 1− 1

N
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Proof. Pick k = c · log(N)
ε2

, DJL states:

∀x, y P

[
||φ(x)− φ(y)|| ∈ (1± ε)||x− y||

]
≥ 1− e

−ε2k
9 ≥ 1− 1

N3

by union bound:

P

[
∀ i, j : ||φ(x)− φ(y)|| ∈ (1± ε)||x− y|| for x = xi, y = xj

]
≥ 1−

(
N

2

)
· 1

N3
≥ 1− 1

N

For k × n matrix G and vector x, where each entry in G is a Gaussian:

φ(x) =
1√
k
·G · x

with 1± ε approximation,

φ : ld2 → lk2

where

ld2 = ||x− y||2 =

d∑
j=1

(xi · · · yi)

What about l1?

ld1 : Rd where ||x− y||1 =
n∑
i=1

|xi − yi|

ldp : Rd where ||x− y||1 =

( n∑
i=1

|xi − yi|p
) 1
p

For l1: N vectors into lower dimensional l1

K = NΩ( 1
D

) for D-approximation

Alternative Sketch:

φ(x) =
1

k
· C · x

where C is a matrix with Cauchy distribution. So given φ(x), φ(y) we can estimate ||x−y|| as the median

(||φ(x)− φ(y)|| of the absolute values of the k coordinates.

It’s enough to take

k = O(
log(N)

ε2
)

Cauchy variables are the 1-stable distribution:
∑
cixi, where ci are random Cauchy, is distributed as

‖x‖1 · c where c is also Cauchy. In general, for p ∈ (0, 2], there exist p-stable distributions satisfying the

above with ‖x‖1 replaced by ‖x‖p.
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